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1. INTRODUCTION

The vibration of solid isotropic spheres has been a topic of study for well over a century
with the "rst published results being credited to Lamb [1]. Since then Sato and Usami [2]
published their classic work and that was expanded by the more complete treatise of
Lapwood and Usami [3]. Noteworthy additions to the published literature have apeared
and among them Heyliger and Jilani [4] verify the results of Sato and Usami [2] for
isotropic spheres and give some results for inhomogeneous spheres as well as an excellent
list of references. Chau [5] has given toroidal frequencies and mode shapes for transversely
isotropic solid spheres. Recently, Chen and Ding [6] outlined their work on layered
transversely isotropic hollow spheres. In this letter, the toroidal frequencies and mode
shapes given by Chau [5] are veri"ed and augmented. New results are tabulated for
spheroidal frequencies of transversely isotropic spheres. Illustrative mode shapes for both
spheroidal and toroidal frequencies are presented graphically as a plane slice removed from
the cross-section of the sphere.

2. ANALYSIS

The "nite element method is used to model the sphere in (r, �, �) co-ordinates. The
derivation and accuracy of the "nite element used in this study has been established
previously by Buchanan and Rich [7] for thick sphereical shells and need not be repeated in
this letter. It should be noted that the formulation is three-dimensional but the "nite
element was derived in two dimensions while maintaining three degrees of freedom by
assuming the following solution that satis"es the circumferential displacement and also
de"nes a circular frequency:

u
�
(r, �, �, t)"; (r, �) cos n� cos �t, u�(r, �, �, t)"= (r, �) cos n� cos �t, )

u
(
(r, �, �, t"< (r, �) sin n� cos �t, (1)

where n is the circumferential wave number, � is the circular frequency and u
�
, u� and u

�
as

well as ;, = and < are the displacements in the r, � and � co-ordinate directions
respectively. The analysis for solid spheres with completely free boundary conditions
corresponds to the solution for circumferential wave number n"0, where spheroidal
motion de"ned by ; and = is uncoupled from toroidal motion de"ned by <.
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A nine-node Lagrangian "nite element was used for the analysis. The cross-section of the
sphere was modelled using 50 elements, 231 nodes or 693 degrees of freedom.

3. FREQUENCIES AND MODE SHAPES

The reliability of the "nite element analysis was veri"ed by comparing results for
frequency with the frequencies reported by Sato and Usami [2]. The "rst two columns of
Table 1 correspond to a solid isotropic sphere with 0)25 for the Poisson ratio. The
agreement between the "nite element solution and the exact solution for the "rst 20
frequencies is acceptable (1)1% di!erence for the 20th frequency). It follows that seven of the
"rst 20 frequencies are toroidal when �"0)25. Frequencies are given in terms of a non-
dimensional frequency � de"ned as

�"�a��/C
��

, (2)

where a is the radius of the solid sphere, � is the density andC
��

is the material constant that
relates the shear stresses �

�� and �
��

to their respective strains. Material constants for
stress}strain relations in spherical co-ordinates are de"ned in most of the referenced papers.
Chau [5] de"nes material constants for spherical isotropy and this work will follow his
description. Chau [5] de"nes a material modulus � that is essentially the material constant
C

��
for a hexagonal material non-dimensionalized with respect to C

��
:

�"(C
��

!C
��

)/2C
��

. (3)

The non-dimensional � allows a comparison of the degree of spherical isotropy for
hexagonal crystals and minerals, where �"1)0 for isotropic materials. Material constants
are non-dimensional with respect to C

��
in this report.

Material constants for the hexagonal materials that were studied by Chau [5] were
tabulated by Payton [8] and were used to compute the frequencies of Table 1. Comparison
with the toroidal frequencies given by Chau [5] indicates the accuracy that can be expected
and it is acceptable. There are several toroidal frequencies given in Table 1 that are not
included in Chau's work because they correspond to a higher harmonic than he reported.
The nature of the formulation of the "nite element solution gives the frequencies in
a numerically ordered manner.

The toroidal results for isotropic materials are independent of the Poisson ratio; however,
the "rst few columns of Table 1 show that varying the Poisson ratio does e!ect the
spheroidal frequencies. The magnitudes of the toroidal frequencies remain unchanged but
their numerical ordering does change. The "rst 20 frequencies are given in Table 1 and as
� increases the spheroidal motion becomes more pronounced. Mode shapes are shown in
Figures 1 and 2 and were plotted using the results for thallium spheres. The numbering of
the mode shapes corresponds to the order of the frequencies in Table 1. The "rst 12
spheroidal mode shapes for thallium are shown in Figure 1 where the deformed shape is
superposed on an undeformed plane sliced from the sphere. Spheroidal mode shapes for �

�
,

�
�
, �

��
, �

��
, �

��
and �

��
are antisymmetric with respect to a horizontal plane (�"903).

Mode shapes for �
�
, �

��
and �

��
show a radially symmetric type of motion. The remaining

mode shapes show a translatory motion along the vertical axis but somewhat symmetrical
with respect to a horizontal plane. The frequencies of Figure 2 show torsional motion of
a plane section of the sphere as a three-dimensional plot. The same motion is shown (using
a smaller scale) as a contour plot to aid in visualizing the mode shape. The non-dimensional
toroidal frequency �"5)765 is common to all materials that are reported in Table 1 and
according to Chau [5] is the "rst root corresponding to a "rst-degree spherical harmonic.



TABLE 1

Frequency �"�a (�/C
��

)�	� for solid spheres with transversely isotropic material properties corresponding to various minerals and crystals, n"0,
�"(C

��
!C

��
)/2C

��
; t indicates toroidal frequency

Isotropic Thallium Titanium Beryllium

�"1)0000 �"0)3719 �"0)7495 �"0)8188

Mode Reference [2] �"0)25 �"0)30 �"0)40 Reference [5] Reference [5] Reference [5]

1 2)501t 2.501t 2)501t 2)501t 1)531t 1)551t 2)178t 2)178t 2)273t 2.273t
2 2)640 2)641 2)647 2)658 2)182 2)484 2)465
3 3)424 3)477 3)588 3)792 2)415t 2)416t 3)373t 3)374t 2)823
4 3)865t 3)867t 3)867t 3)867t 3)197t 3)201t 3)815 2)980
5 3)916 3)920 3)942 3)979 3)585 3)820 3)517t 3)519t
6 4)440 4)440 4)996 5)102t 3)952t 4)450t 4)456t 3)661
7 4)865 4)866 5)009 5)130 4)245 4)986 3)990
8 5)009 5)024 5)061 5)265 4)689t 5)171 4)639t 4)646t
9 5)095t 5)102t 5)102t 5)765t� 4)832 5)189 4)679

10 5)763t 5)765t 5)765t 6)226t 5)425t 5)493t 5)405
11 6)033 6)070 6)124 6)287t 5)539 5)764t 5)765t 5)726t
12 6)266t 6)287t 6)287t 6)891 5)764t 5)765t 6)088 5)644
13 6)454 6)496 6)615 7)095 6)013 6)512t 5)755
14 6)771 6)918 7)175 7)141t 6)172t 6)777 5)764t 5)765t
15 7)023 7)105 7)141t 7)316 6)368t 6)372t 6)855t 6)859t 6)600
16 7)136t 7)141t 7)285 7)453t 6)969t 7)172 6)788
17 7)404t 7)453t 7)453t 7)566 7)060t 7)065t 7)531 6)874
18 7)744 7)810 8)095 8)429 7)175 7)622 6)936t 6)940t
19 7)995 8)078 8)234 8)455t 7)185 7)955t 7)964t 7)238
20 8)062 8)153 8)241 8)504 7)305 8)251 7)531
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TABLE 1

Continued

Hafnium Cobalt Yttrium Magnesium Rhenium

�"0)9336 �"0)9404 �"1)0016 �"1)0213 �"1)0556

Mode Reference [5] Reference [5] Reference [5] Reference [5] Reference [5]

1 2)420t 2.420t 2)429t 2)429t 2)503t 2)503t 2)527t 2)527t 2)567t 2.567t
2 2)620 2)691 2)676 2)697 2)748
3 3)671 3)754t 3)756t 3)746 3)814 3)965t 3)966t
4 3)742t 3)743t 4)096 3)868t 3)869t 3)903t 3)905t 3)975
5 3)938 4)222 3)996 4)031 4)116
6 4)787 4)950t 4)957t 4)583 5)046 5)169
7 4)933t 4)940t 5)318 5)098t 5)106t 5)145t 5)153t 5)226t 5)233t
8 5)079 5)515 5)136 5)186 5)300
9 5)080 5)764t 5)765t 5)213 5)311 5)536

10 5)764t 5)765t 5)814 5)764t 5)765t 5)764t 5)765t 5)764t 5)765t
11 6)088t 6)104t 6)215 6)280 6)419
12 6)159 6)472 6)291t 6)349t 6)448t
13 6)708 7)072t 7)076t 6)899 7)012 7)195t 7)200
14 7)069t 7)069t 7)241t 7)038 7)159t 7)164t 7)310
15 7)217t 7)604 7)138t 7)143t 7)358 7)520
16 7)224 7)641 7)278 7)527t 7)644t
17 7)368 8)245 7)458t 7)553 8)546t 8)556t
18 8)006 8)334t 8)344t 8)051 8)169 7)877
19 8)300 8)375t 8)352 8)448 8)288
20 8)321t 8)331t 8)534 8)448t 8)458t 8)484t 8)494t 8)631
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TABLE 1

Continued

Ice (275 K) Apatite Beryl Zinc Cadmium

�"1)1041 �"1)1606 �"1)3309 �"1)6919 �"1)8897

Mode Reference [5] Reference [5] Reference [5] Reference [5] Reference [5]

1 2)622t 2.623t 2)612 2)867t 2)867t 2)926t 3.192
2 2)786 2)686t 2)686t 2)921 3)152 3)386t 3)387t
3 4)049t 4)051t 2)796 4)071 3)213t 3)214t 3)668
4 4)084 3)756 4)273 4)065 4)383
5 4)164 3)811 4)421t 4)424t 4)766 5)212t 5)215t
6 5)337t 5)344t 4)111 5)120 4)810 5)442
7 5)356 4)146t 4)148t 5)434 4)949t 4)951t 5)565
8 5)579 4)735 5)764t 5)765t 5)034 5)764t 5)765t
9 5)706 5)463t 5)472t 5)825t 5)833t 5)599 6)116

10 5)764t 5)765t 5)547 5)792 5)764t 5)765t 6)457
11 6)484 5)676 6)535 5)971 6)616
12 6)585t 5)764t 5)765t 7)187t 6)340 6)863t 6)874t
13 7)245t 7)250t 5)945 7)471t 7)477t 6)517t 6)527t 7)256
14 7)522 6)619 7)489 6)917 7)476
15 7)596 6)742t 7)623 7)191 7)969t 7)976t
16 7)806t 6)980 7)683 7)657 8)340
17 8)082 7)222 8)345 7)759 8)469t
18 8)570 7)303t 7)309t 8)520t 7)801t 7)807t 8)524
19 8)632t 8)643t 7)319 8)724 7)892 8)860
20 8)719 7)584 9)013t 9)025t 8)041t 8)896
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Figure 1. Spheroidal mode shapes for solid spheres with free boundary conditions corresponding to material
properties for thallium (see Table 1).
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For thallium (�"0)3719), �"5)765 is the seventh toroidal root, but for an isotropic
material (�"1)0) it is the fourth toroidal root, while for cadmium (�"1)8897) �"5)765 is
the third toroidal root. The e!ect on frequency and mode shape caused by changing
material properties is easily identi"ed. Chau [5] and Hosseini-Hashemi and Anderson [9]
gave torsional mode shapes as deformed meshes on a spherical surface. The mode shape
corresponding to �"5)765 has been given by Hosseini-Hashemi and Anderson [9, Figure
3(b)] and when compared with� Figure 2 it is �

��
. The corresponding motion inside the

sphere is illustrated as points inside the sphere that are moving opposite to points on the
surface of the sphere. Similarly, �

�
and �

�

, as well as �

�
and �

��
of Figure 2 would appear

to have similar mode shapes when viewed as motion on the surface of the sphere, but Figure
2 shows the motion of the interior of the solid sphere. It follows that Figure 2 gives an
improved visualization of the mode shapes.

Frequencies for the spheroidal motion of a solid isotropic sphere with completely "xed
boundary conditions were reported by Schafbuch et al. [10]. Table 2 gives the "nite element
results and comparison for �"0)25 since that was the Poisson ratio used by Sato and
Usami [2]. The "rst "ve torsional frequencies are also listed in Table 2. Chen et al. [11]



Figure 2. Toroidal mode shapes for solid spheres with free boundary conditions corresponding to material
properties for thallium (see Table 1).
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computed frequencies for "xed spheres with transversely isotropic properties using material
properties that were postulated in an early paper by Cohen et al. [12] and those results are
also compared with the "nite element results in Table 2.

Frequencies are given in Table 3 for three materials with distinctly di!erent values of � so
that e!ects of material properties on frequency can be illustrated for spheres with
completely "xed boundaries. The solid spheres of Table 3 have "xed displacements at the
boundary of the sphere. The "rst torsional frequency is the same for all solid spheres with
these boundary conditions. The results show a trend that as � decreases the "rst spheroidal
frequency increases, but the second toroidal frequency tends to decrease.

4. CONCLUDING REMARKS

Frequencies and mode shapes for solid spheres with transversely isotropic material
properties have been computed using a "nite element that was formulated in spherical



TABLE 2

Frequency �"�a(�/C
��

)�	� for solid spheres with completely ,xed boundary conditions and
n"0

Mode Isotropic �"0)25 Transversely isotropic�

Reference [9] Sph. Tor. Reference [10] Sph. Tor.

1 3)990 4)072 4)494 3)489 3)570 4)494
2 5)775 5)777 5)765 6)565 6)569 7)739
3 6)203 6)296 6)992 6)881 7)043 7)917
4 7)293 7)301 7)739 8)068 8)084 10)526
5 7)736 7)747 8)194 9)319 9)359 10)992

�C
��

"20)0, C
��

"12)0, C
��

"2)0, C
��

"2)0, C
��

"1)0, C
��

"4)0.

TABLE 3

Frequency �"�a (�/C
��

)�	� for solid transversely isotropic spheres with completely ,xed
boundary conditions and n"0

Mode �

Cadmium, �"1)8897 Isotropic, �"0)3 Thallium, �"0)3719

Sph. Tor. Sph. Tor. Sph. Tor.

1 3)251 4)494 4)244 4)494 5)492 4)494
2 5)315 6)544 5)979 5)765 6)862 5)052
3 5)908 7)739 6)334 6)992 6)953 5)695
4 6)653 8)307 7)482 7)739 8)283 6)375
5 7)801 9)968 7)877 8)194 8)874 7)074
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co-ordinates. Results in the literature have been extended to include a variety of hexagonal
material properties. Selected mode shapes have been presented graphically and give an
improved illustration for motion of the cross-section of the sphere during free vibration.
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